The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice.
نویسندگان
چکیده
Following peripheral exposure, many transmissible spongiform encephalopathy (TSE) agents accumulate first in lymphoid tissues before spreading to the CNS (termed neuroinvasion) where they cause neurodegeneration. Early TSE agent accumulation upon follicular dendritic cells (FDCs) in lymphoid follicles appears critical for efficient neuroinvasion. Most clinical cases of variant Creutzfeldt-Jakob disease have occurred in young adults, although the reasons behind this apparent age-related susceptibility are uncertain. Host age has a significant influence on immune function. As FDC status and immune complex trapping is reduced in aged mice (600 days old), we hypothesized that this aging-related decline in FDC function might impair TSE pathogenesis. We show that coincident with the effects of host age on FDC status, the early TSE agent accumulation in the spleens of aged mice was significantly impaired. Furthermore, following peripheral exposure, none of the aged mice developed clinical TSE disease during their lifespans, although most mice displayed histopathological signs of TSE disease in their brains. Our data imply that the reduced status of FDCs in aged mice significantly impairs the early TSE agent accumulation in lymphoid tissues and subsequent neuroinvasion. Furthermore, the inefficient neuroinvasion in aged individuals may lead to significant levels of subclinical TSE disease in the population.
منابع مشابه
Scrapie Agent Neuroinvasion in Aged Mice Dendritic Cell Status Dramatically Impair The Effects of Host Age on Follicular
متن کامل
In vivo depletion of CD11c+ cells impairs scrapie agent neuroinvasion from the intestine.
Following oral exposure, some transmissible spongiform encephalopathy (TSE) agents accumulate first upon follicular dendritic cells (DCs) in the GALT. Studies in mice have shown that TSE agent accumulation in the GALT, in particular the Peyer's patches, is obligatory for the efficient transmission of disease to the brain. However, the mechanism through which TSE agents are initially conveyed fr...
متن کاملPrion Replication in the Hematopoietic Compartment Is Not Required for Neuroinvasion in Scrapie Mouse Model
Fatal neurodegenerative prion diseases are caused by the transmissible PrP(Sc) prion agent whose initial replication after peripheral inoculation takes place in follicular dendritic cells present in germinal centers of lymphoid organs. However, prion replication also occurs in lymphoid cells. To assess the role of the hematopoietic compartment in neuroinvasion and prion replication, we generate...
متن کاملNeuroinvasion by a Creutzfeldt-Jakob disease agent in the absence of B cells and follicular dendritic cells.
With the potential spread of bovine spongiform encephalopathy to people as a variant Creutzfeldt-Jakob disease (CJD), it becomes critical to identify cells in the periphery that carry infection. Initial work with scrapie agents suggested that B cells were central vectors for neuroinvasion. Subsequent studies indicated that B cells played an indirect role by promoting the development of follicul...
متن کاملFollicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility.
Transmissible spongiform encephalopathies (TSEs) may be acquired peripherally, in which case infectivity usually accumulates in lymphoid tissues before dissemination to the nervous system. Studies of mouse scrapie models have shown that mature follicular dendritic cells (FDCs), expressing the host prion protein (PrP(c)), are critical for replication of infection in lymphoid tissues and subseque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 183 8 شماره
صفحات -
تاریخ انتشار 2009